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Abstract. The evaluation of neutron cross sections as a function of energy is fraught with inconsis-
tent measurements. I describe a Bayesian approach to deal with the inconsistencies by probabilisti-
cally modeling the possibility of discrepant data and data sets with long-tailed likelihood functions.
Systematic normalization uncertainties in each data set are included by considering the normaliza-
tion to be a variable with specified uncertainty. By characterizing its uncertainty with a mixture of
Cauchy and Gaussian distributions, data sets that disagree with the majority of others are given less
weight in terms of normalization, but still provide useful information about the energy dependency
of the cross sections. I demonstrate the approach with data sets of neutron fission cross sections for
americium 243. Samples from the posterior obtained with the Markov Chain Monte Carlo technique
are used to estimate the posterior mean and standard error.
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INTRODUCTION

The process of evaluation of neutron cross sections involves combining measurements
from numerous experiments to obtain a single set of cross-section value as a function
of energy and estimate their uncertainties. The experiments span many decades and are
of varying quality. It is not unusual for the evaluator to be confronted with reported
cross sections that are in substantial disagreement. It is important to take into account
the independent (random) errors in each datum, as well as the systematic uncertainty
in the normalization of each experiment. Regrettably, the published data are not always
accompanied with detailed description of the sources of their uncertainties.

The present work focuses on a Bayesian approach to cope with inconsistent measure-
ments and discrepant data sets. A necessary ingredient in the analysis is the assignment
of uncertainty in the data, both in the form of independent errors and normalization
error. The latter is treated as a systematic effect common to all data from a single ex-
periment. I develop a probabilistic model of the measurements, which includes these
separate sources of uncertainty. The underlying error distributions are taken to be Gaus-
sian. However, if the nominal width assumed for the error distribution is considered
to be uncertain, and underestimated, the resulting likelihood function should possess a
long tail, which is known to ameliorate the effect of outliers. The final estimates for the
neutron cross sections are obtained by sampling the posterior distribution by means of
Markov Chain Monte Carlo (MCMC) to obtain their means and variances. I demonstrate
the approach on measurements of the neutron fission cross sections for americium-243.
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BAYESIAN TREATMENT OF DISCREPANT DATA

A measurement that disagrees with numerous other data by much more than its stated
standard error is called an outlier. Outliers are often caused by mistakes made in taking
the data or their analysis. While we might prefer to believe otherwise, every experimen-
talist knows that mistakes happen. Of course, experience and carefulness can reduce the
number of mistakes, but not eliminate them entirely. For dramatic evidence of outliers,
look at the review of the properties of fundamental particles periodically performed by
the Particle Data Group (2004) [1]. The question is, how do we cope with outliers?

The traditional approach to dealing with outliers is to identify and eliminate them
from the analysis. In this iterative process, sometimes referred to as robust estimation,
it may be difficult to decide which data are outliers. The data are typically either in or
out. The Bayesian approach is to explicitly allow for the possibility of outliers by using
long-tailed likelihood functions. The analysis is essentially automatic and includes all
the data. The weight of each datum in determining the posterior mean is regulated by
how well it agrees with the remaining data.

O’Hagan [2] outlined the early history of handling outliers in Bayesian analysis,
which stretches back to 1961. He refined the proof of Dawid [3] that a likelihood
function with a “thick” tail effectively reduces the influence of highly discrepant data
points. An approach to treating discrepant measurements was presented at the MaxEnt
meeting in 1988 by Fröhner [4] in which he estimated the “unrecognized errors” in
each datum. In 1993 Hanson and Wolf [5] noted the potential usefulness of the Cauchy
distribution for handling outliers and presented analytic expressions for the posterior
mean and variance for Cauchy likelihood functions. Sivia [6] proposed a “good and
bad data” approach in 1996, which leads to a mixture of two Gaussians. Press [7]
argued similarly but included the probability that each datum belonged to the “good”
distribution. Dose and von der Linden [8] proposed a gamma distribution for the prior
on the inverse variance, under the assumption that the analyst could estimate of how
accurately the experimenter has assessed his/her uncertainties. The result is a Student
t-distribution for the likelihood function. In the context of a good-bad datum strategy,
they estimated the probability that each datum came from a Gaussian with its quotedσ .

Uncertain uncertainties

The Gaussian distribution is often the appropriate form for a likelihood function when
the standard errorσ is known. However, when the data disagree by much more than their
standard errors, we must conclude that their quoted uncertainties are probably incorrect.
In that case, it is appropriate to scale each quotedσi by a factorsi . The initial uncertainty
in the vectors is characterized by the prior distributionp(s| I), where I stands for
whatever information can be brought to bear. The posterior for the inferred quantity
x is obtained by marginalizing the joint distribution forx ands overs [9]

p(x|d,σσσ) =
∫

p(x,s|d,σσσ)ds∝
∫

p(d |x,s,σσσ)p(x,s|σσσ)ds , (1)



whered is the vector of measurements andσσσ represents their stated standard errors.
Under the assumption of an underlying Gaussian likelihood, a flat prior onx, and that
the prior onsi is independent ofσi , the posterior is

p(x|d,σσσ) ∝
∫

p(d |x,s,σσσ)p(s)ds∝
∫

p(s)∏
i

s−1
i σ−1

i exp

{
−∑

i

(x−di)2

2s2
i σ2

i

}
ds . (2)

For certain choices ofp(si), the integration oversi can be done analytically. The result is
a revised likelihood function that includes the uncertainty in the standard error for each
datum.

The various approaches for coping with outliers mentioned above differ mostly in
the assumptions made forp(s). The simplest assumption is that the measurements are
drawn from two distributions, one corresponding tos = 1, and another with a much
larger standard deviation,s = γ À 1. The first term corresponds to the well-behaved
(good) measurements, the second to the outliers (bad). The resulting likelihood function
for a measurementd, given a valuex, is a mixture of two Gaussians [6, 7] (2G)

p(d |x) =
(1−β )
σ
√

2π
exp

{
−(x−d)2

2σ2

}
+

β
γσ
√

2π
exp

{
−(x−d)2

2γ2σ2

}
, (3)

whereβ is the probability ofd being an outlier.
As mentioned earlier, Dose and von der Linden [8] proposed a gamma distribution

for p(s−2) = Γ(s2,a), which yields a Studentt-distribution for the likelihood. This prior
is the same as the often-used “inverse-chi-squared” distribution [10]. The variablea is
related to our prior belief about the uncertainty ins, a−1 = var(s−2). For the choice
a = 1

2, the likelihood is a Cauchy distribution. For that case, if one believes that a
portion of the data comes from a Gaussian likelihood with the quotedσ , but admits the
possibility of an outlier, the likelihood is a mixture of Cauchy and Gaussian distributions
(CG)

p(d |x) =
(1−β )
σ
√

2π
exp

{
−(x−d)2)

2σ2

}
+

β
σπ
√

2

(
1+

(x−d)2

2σ2

)−1

. (4)

Dose and von der Linden further consideredβ to be an uncertain variable, and therefore
put a distribution on it and integrated over it to obtain the posterior onx.

It can be useful to draw an analogy between minus the logarithm of a probability
density function (= ϕ) and a physical potential. Figure 1 shows theϕ ’s for a Gaussian,
a two-Gaussian mixture (3), and a Cauchy-Gaussian mixture (4). Ifϕ is a potential, then
its gradient∇ϕ is the force with which a datumd pulls on the inferential quantityx. The
effective force for a Gaussian increases linearly with the difference|x−d|. On the other
hand, for the other two functions, which have long tails, the restoring force eventually
decreases for large residuals. The behavior of∇ϕ explains why these functions are
tolerant of outliers. The gradient∇ϕ corresponds to the influence function, employed
in robust estimation to characterize the influence a new datum will have on an estimated
quantity.
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FIGURE 1. (a, left) Plot ofϕ (minus-log-probability) for several pdfs: G stands for Gaussian, 2G for a
mixture of two Gaussians (β = 0.1,γ = 10), and CG for Cauchy-Gaussian mixture (β = 2/3). (b, right)
the derivative of (a). Becauseϕ is analogous to a potential, its derivative∇ϕ acts like a force. The common
feature of outlier-tolerant pdfs is that∇ϕ falls off for large residuals.
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FIGURE 2. (a, left) When combined using Gaussian likelihoods, the five hypothetical measurements
shown yield the posterior plotted as the dashed line. This result seems implausibly narrow, given the large
dispersion in the data. The two-Gaussian mixture (β = 0.1,γ = 10) yields a more sensible posterior (solid
black line), which effectively discounts the two outliers. (b, right) Semi-log plot shows the tails of the
likelihoods and the posterior.

Example of discrepant data

As an example, suppose five measurements of a cross section are provided; 2.385,
2.521, 2.449, 2.420, and 2.670 b. All are stated to have a standard error of 0.027 b.
Figure 2 shows the data with their error bars and corresponding likelihoods. Data point
5 is clearly an outlier, being eight standard deviations away from the mean of the other
four points. A least-squares fit to these data gives the estimate of 2.489± 0.012 b, with
χ2 = 69.9 and ap value of2×10−14 for 4 DOF. This standard error seems unreasonably



small because the data are inconsistent with the underlying assumption of a Gaussian
likelihood.

A well-known result of the Gaussian likelihood is that the standard deviationσ of
the weighted average is given byσ−2 = ∑i σ−2

i , whereσi is the standard error in
the ith measurement. This automatic decrease in uncertainties does not depend on the
distribution of the measurements, which defies common sense. When the measurements
are more widely distributed than theirσ ’s imply, more thought should be given to
whether the model being used for the likelihood is appropriate.

With a flat prior on the cross sectionx, the posterior is proportional to the product of
likelihoods: p(x|d) ∝ ∏i p(di |x). With the two-Gaussian likelihood (β = 0.1,γ = 10),
the posterior mean and rms deviation are 2.430± 0.022 b. This result is close to the
cluster of three points, which is what we might expect if we believe that the outlier
should be discounted. The outlier has little effect. The standard error is much larger than
for the Gaussian likelihood, but this is plausible because the three points in the cluster
are more disperse than theirσ ’s might indicate.

The semi-log plot, Fig. 2b, shows the tails of the likelihood for each datum. The
posterior distribution, which is decidedly non-Gaussian, has a second small peak near
the outlying point. This bump has little effect on the posterior mean and variance. The
presence in the posterior of more than one local maximum, and the fact that the posterior
may not be symmetric, indicates the need to use MCMC [11] to sample the posterior and
estimate its mean and standard deviation.

This example points out how a simple long-tailed likelihood function does a remark-
able job of handling outliers. The common experience reported in the articles already
mentioned is that the details of the likelihood function employed are relatively unim-
portant. The important ingredient is that the likelihood possesses a long enough tail to
encompass any potential outlier. For example, with the two-Gaussian function used here,
if the broad Gaussian does not reach the outlier, it fails to ameliorate its disruptive effect.

NORMALIZATION UNCERTAINTY

In the general experimental scheme, cross sections are obtained by multiplying an ob-
served number of counts by a normalizing factor. In this section, I focus on how to
handle uncertainties in the normalization factor. A reasonable model for the measured
number of counts isd = cx+ ε, wherex stands for the cross sections,c is the normal-
ization factor, andε is a random variable representing the statistical fluctuation ind.
The counting process follows a Poisson distribution, but most cross-section experiments
involve enough counts that a Gaussian distribution forε is a good approximation. As-
suming normal distributions for the uncertainty inc and writingp(cx,c|d) ∝ exp(−ϕ),
the negative logarithm of the posterior distribution for each data set is

2ϕ = ∑
i

(cx−di)2

σ2
i

+
(c−1)2

σ2
c

, (5)

whereσc is the relative uncertainty in the normalization factor.



We desire the distribution in the variablesx andc, so we need to transform variables.
Consequently, we must divide thep(cx,c) by |J|, where J is the Jacobian for the
transformation [9], i.e. the determinant of the matrix of first derivatives of the new
variables with respect to the old ones;J = 1/c. Thus,p(x,c) ∝ |J|−1exp(−ϕ). To obtain
p(x), the nuisance parameterc is marginalized out by integratingp(x,c) over c. The
Jacobian factor makes little difference in the present examples because the posterior
distributions are quite narrow. Likewise, the more appropriate choice of a log-normal
distribution [12] for the prior onc is not important here. For multiple data sets, one
multiplies the likelihoods together, or sums theϕk’s from all data sets:ϕ = ∑k ϕk.

Direct probabilistic modeling of multiplicative normalization uncertainties has been
shown to resolve the PPP problem by Smith [13] (p. 205ff) and Hanson et al. [12].

DISCREPANT DATA SETS

When neutron cross sections for a nucleus have been measured many times, there
is often some disagreement among the various measurements. Unfortunately, there is
often too little information provided about the uncertainties in the data, especially
systematic uncertainties. Then, the analyst has to make do with the data and their stated
uncertainties.

Four sets of measurements of neutron-induced fission cross sections for americium-
243 in the energy range 1–4 MeV are shown in Fig. 3. The labels and normalization
errors for these are Fursov-1985, 1.4% [14], Behrens-1981, 0.9% [15], Knitter-1985,
2.8% [16], and Kanda-1987, 1.8% [17]. The one standard deviation error bar for nor-
malization of each data sets in shown on the graphs as think vertical bars at around 1.64
MeV.

The energy dependence of the cross sections is modeled using cubic splines with
nine knots, evenly spaced inlog(E). The normalization is treated as a systematic effect,
as described in the previous section. The posterior is sampled using MCMC based on
the Metropolis algorithm with 2×105 steps. Figure 3 shows the results of the analysis
done using the conventional Gaussian likelihood for both the data and the normalization
term, as in Eq. (5). When the three-data-set cluster is analyzed, one obtains the posterior
mean shown in Fig. 3a and the standard deviation visualized in Fig. 3b. The latter plot
demonstrates the Bayesian notion of “model checking” in which the posterior predictive
distribution is compared to the original data to see how well it matches them. In this
case, the agreement is fairly good. These results seem reasonable.

However, when the fourth discrepant data set (Behrens-1981) is included, the results
go awry. The posterior mean lies between the outlying data set and the others, and the
standard error is smaller than for the three data sets. Figure 3d shows that the posterior
predictive distribution does not represent the data, a sign that the analysis model is
faulty. The inferred values of the cross section at 2 MeV are 1.453± 0.021 b for three
data sets, and 1.588± 0.016 b for four. The latter relative uncertainty is just 1.0%
so the normalization uncertainty in the Behrens-1981 data (0.9%) plays a big role in
determining the final uncertainty. This result is very unsettling, since the normalization
of this data set is highly suspect.

Figure 4 shows the results for the same data sets obtained using the Cauchy-Gaussian
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FIGURE 3. Analysis of fission cross sections for Am-243 based on Gaussian likelihood functions. The
data sets are:◦ Fursov-1985,M Behrens-1981,¤ Knitter-1985,O Kanda-1987. (a, top-left) Three data sets
clustered together, with the dashed line showing the posterior mean. The other curves show the posterior
renormalized to predict each data set. (b, top-right) 12 samples from posterior distribution compared to
the data. (c, bottom-left) Same as (a) with a fourth discrepant data set added, which severely shifts the
posterior mean. (d, bottom-right) Posterior samples for Gaussian analysis of all four data sets, which do
not replicate any of the measurements.

mixture (4) with β = 2/3 for the normalization term in Eq. (5). This outlier-tolerant
distribution allows for the possibility of a gross error in normalization. The results for
the three data sets are not much different than obtained above, however, with slightly
larger uncertainties. The cross sections at 2 MeV are 1.453± 0.026 b for three data
sets, and 1.418± 0.021 b for four. Figures 4b and 4d show that the posterior predictive
distributions match the three clustered data sets fairly well; the normalization of the
fourth data set is effectively disregarded. The Cauchy-Gaussian mixture has the effect
of increasing the standard error for the three-data-set cluster, which is not unreasonable,
owing to their dispersion. It effectively reduces the influence of the Behrens-1981 data
set. In fact, the cross section at 2 MeV is decreased a fair amount, but is increased
elsewhere. The normalization of the outlying data set has no influence on result, but its
shape is included, as evidenced by the bump in the posterior mean below 1.4 MeV.

I find that using a pure Cauchy distribution for the normalization term (β = 1), yields
1.460± 0.047 b and 1.449± 0.044 b for the two analyses. The width of the posterior
is significantly increased by the long tails of the Cauchy. This choice amounts to using
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FIGURE 4. Analysis of the same data in Fig. 3. (a, top-left) The dashed line shows the posterior mean.
The other curves show the renormalized posterior, which should match each data set. (b, top-right) 12
samples from posterior distribution compared to the data. (c, bottom-left) The posterior mean (dashed
line) is hardly affected when the fourth discrepant data set is added. (d, bottom-right) Posterior samples
for the Cauchy-Gaussian analysis of all four data sets.

a very broad prior forp(σ). Whenβ is smaller, its value is relatively unimportant for
determining the posterior mean, but it has some effect on the standard deviation.

This analysis has not considered the potential outliers within each data set, but that is
easy to do and might be warranted.

CONCLUSION

I have reviewed the general Bayesian approach to dealing with discrepant data, which is
to use a long-tailed likelihood. When applied to the systematic normalization factor for
a complete data set, the normalization factor is essentially ignored when the data set is
discrepant. On the other hand, the energy dependence among the data belonging to that
data set is incorporated into the posterior.

Bayesian analysis provides the logical and computational structure to allow one to
combine knowledge about experiments in a consistent way. In a real sense, the Bayesian
treatment of outliers presented here amounts to taking a vote among the data sets. The
majority (weighted inversely by their variances) wins. It is, after all, possible that the



outlying data set could be the correct one. Therefore, the analyst must try to uncover all
aspects of the experimental uncertainties and incorporate them into the analysis. Other
kinds of independent measurements, such as criticality experiments, can be useful for
resolving inconsistent data [18].

More work needs to be done on systematic uncertainties. It seems it would be benefi-
cial to use more informative priors for the systematic uncertainties based on knowledge
of the experiments, i.e., how they were done, the experimental techniques used, and who
did them. A thorough analysis should be done on what kinds of uncertainties are typical
and how to include them in a full probabilistic model of the experimental uncertainties.
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